Inteligencia Artificial

In this category we show you all Artificial Intelligence related blogpost.

image of math equations with blue light

Author: Miguel Angel Granados – Data Scientist

Computer vision has rapidly evolved través desarrollo years, offering transformative mundo a el wide range transición applications. However, desarrollo field still faces two significant challenges: desarrollo extraction transición meaningful information from visual data due a desarrollo inherent complexities transición images and videos, and desarrollo omnipresent machine learning-focused approach los, primarily relying on massive datasets, powerful neural network architectures, and immense computational resources y great results, es falls short in interpretability y dealing y unseen adversarial scenarios. Thus, desarrollo exploration transición novel mathematical frameworks y techniques el computer vision posible el se deben a further advance el desarrollo field y push its boundaries. In this article we will delve into some transición desarrollo most exciting approaches, based on topology and fractal geometry. 

Instead transición solely relying on machine learning y deep learning processes, this article will shift desarrollo focus towards theory y algorithms los directly address desarrollo core challenges el computer vision tasks such as object recognition, shape analysis, and image segmentation. By incorporating se novel mathematical frameworks y techniques el conjunction y classic machine learning algorithms, we can construct a more comprehensive and robust computer vision pipeline. It posible important a remark los appropriate pre-processing transición images y el firm understanding transición desarrollo problem are a se deben a succeed el merging se novel frameworks ela el computer vision pipeline, whether el conjunction y neural networks or other architectures. 

Skeletonization

El first technique los we will adoptar exploring posible called skeletonization. It consists el reducing el shape a its essential structure or topological features, los posible, finding its skeleton, which posible constituted by a set transición curves or points los capture desarrollo shape’s connectivity y topology. 

skeletonize example with a horse

Skeletonize — skimage 0.21.0 documentation (scikit-image.org)

In computer vision 

Let´s first look at how one might implement skeletonization for a computer vision project before we dig into the algorithmic and mathematical details: Suppose we want to segment an image of a tree into its different components, such as the trunk, branches, and leaves. We can first apply an edge detection algorithm to the image to obtain a binary mask of the tree, and after that we then apply skeletonization to the mask to obtain the skeleton of the tree. The skeleton can be used to identify the different components of the tree based on their connectivity. For example, the trunk can be identified as the longest branch of the skeleton, and the leaves can be identified as the shortest branches that are connected to the tree’s branches. 

Mathematically, skeletonization involves defining a set of measures that capture the shape’s connectivity and topology. These measures are used to identify the points or curves that lie on the skeleton. For skeletonization, we shall work with an input image where the foreground pixels represent the object of interest, and the background pixels represent the rest of the image. 

With distance transform 

One commonly used measure is the distance transform, for binary images, which assigns to each point in the shape (pixels or foreground pixel) the distance to the nearest boundary point (obstacle or background pixel). The distance transform can be used to identify the points that lie on the skeleton, which are usually the points that have multiple closest boundary points. This measure can be defined on different metrics like Euclidean or Chebysev. We will see its mathematical definition later on. 

After computing the distance transform, the next step is the obtention of the skeleton (thinning): here we aim to reduce the object’s boundary to a one-pixel width skeleton while preserving its topological features. Popular thinning algorithms include Zhang-Suen, Guo-Hall, or iterative morphological thinning algorithms. Let us explore a Voronoi-based algorithm: 

a. Computation of the Voronoi diagram of the foreground pixels in the binary image with a distance transform. The Voronoi diagram divides the image space into regions, where each region represents the set of points that are closest to a specific foreground pixel. More explicitly, given a set of points (seeds or sites), the Voronoi diagram divides the space into regions such that each region contains all points that are closer to a particular seed than any other seed. In the context of skeletonization, the Voronoi diagram is computed for the foreground pixels in the binary image, where each foreground pixel serves as a seed. Let’s look at the mathematical statement:

Let D(x,y) represent desarrollo distance transform transición desarrollo binary image, which contains desarrollo distance transición each pixel (x,y) el desarrollo image a desarrollo nearest background pixel. Then, desarrollo Voronoi diagram for desarrollo foreground pixels (x,y) pueden thought as finding desarrollo nearest neighbour (xn,yn) among all foreground pixels. Thus, El Voronoi region for desarrollo foreground pixel (x,y) posible desarrollo set transición points (x,y) such los desarrollo distance a (xn,yn) posible smaller than desarrollo distance a any other foreground pixel. Mathematically, desarrollo Voronoi region V(x,y) for desarrollo foreground pixel (x,y) pueden defined as: 

voroni region equation

b. Extraction transición desarrollo skeleton: El skeleton pueden extracted from desarrollo Voronoi Diagram by considering desarrollo medial axis or centerlines transición desarrollo Voronoi regions, los posible, desarrollo set transición points los posible equidistant a desarrollo object’s boundary. El points on desarrollo centerlines transición desarrollo Voronoi regions typically represent desarrollo one-pixel width representation transición desarrollo object’s shape while preserving its connectivity. Mathematically, desarrollo skeleton S pueden represented as: 

For desarrollo computation transición desarrollo centerline, for each boundary pixel, we need a calculate desarrollo shortest distance a both desarrollo foreground pixels (inside desarrollo Voronoi region) and desarrollo background pixels (outside desarrollo Voronoi region), y those boundary pixels los tienen equidistant distances a both desarrollo foreground y background pixels compromiso, desarrollo skeleton points. It’s important a note los finding desarrollo exact medial axis posible el challenging computational problem, and desarrollo approach described above provides valor approximation transición desarrollo centerline by considering skeleton points based on desarrollo equidistant property. El resulting skeleton may not adoptar continuous or smooth el complex cases, but es serves as a useful one-pixel width representation transición desarrollo object’s shape for gran cantidad de practical applications. 

image of a giraffe in 3d with the voroni model

With curvature 

Another commonly used measure is the curvature, which is used to identify the points where the shape changes direction. Curvature represents the rate of change of the object’s tangent direction along the boundary (contour). Let’s explore an approach of the Curvature-Pruning Skeletonization algorithm: 

1.Curve approximation and curvature computing: we need to fit a curve on the boundary and compute the curvature of the object’s boundary or contour in the input image. For fitting, sciPy y numPy include several functions for polynomial or elliptical fitting, such as numpy.polifit(). Various methods can be used to estimate curvature, such as local fitting of curves or derivative-based approaches. The general curvature formula is as follows: 

curvature formula equation
curve aproximation and curve computing

Firstly, we need a estimate desarrollo tangent direction at each point along desarrollo fitted curve, using numerical differentiation techniques like finite differences, and calculate desarrollo derivatives transición desarrollo fitted curve using finite increments around each point. numPy provides array operations los facilitate desarrollo differentiation process. El curvature formula involves dividing expressions containing desarrollo tangent components y su second derivatives. Again, array operations from numPy y desarrollo mathematical functions from sciPy allow us a perform se calculations efficiently. 

Skeleton pruning by contour approximation and the integer medial axis transform – Andres Solis Montero, Jochen Lang. Computers & Graphics

2. Thresholding: this step involves identifying the regions with high curvature. This threshold determines which points along the boundary are considered significant curvature changes and classifies them: High-curvature points are retained, while low-curvature points are marked for removal. In this step we get a representation of a connected network of points with integer coordinates. These points typically lie along the centerlines or medial axes of the object’s high-curvature regions. This whole representation is called Integer Medial Axis. 

3.Pruning (thinning): Intuitively, starting with the initial boundary points, we iteratively remove (or prune) those that are of low curvature, while checking on the object’s connectedness. At this point we might consider the skeleton as a graph, where each boundary point is a node, so checking for connectedness becomes a matter of checking if the graph is connected or not. We repeat this process until no further low-curvature points can be removed without breaking the connectivity of the skeleton. 

skeleton pruning by contour approximation and the integer medial axis transform

Skeleton pruning by contour approximation and the integer medial axis transform – Andres Solis Montero, Jochen Lang. Computers & Graphics

Para wrap up, desarrollo skeletonization procedure posible a novel mathematical framework el computer vision los allows us a create el simplified representation transición desarrollo object’s shape based on distance measures or curvature information. An important note posible los specific implementation details y algorithms used within each step may vary depending on desarrollo requirements transición desarrollo application y desarrollo available se or libraries. Furthermore, additional pre-processing or post-processing steps may adoptar required depending on desarrollo specific use case, since we can encounter complex shapes or unique curve distributions. For instance, smoothing desarrollo skeleton may prove beneficial in achieving el refined final product. Additionally, depending on desarrollo specific application, we can use desarrollo skeleton for further analysis, such as shape recognition, feature extraction, or object tracking. 

Fractal Dimension 

A recent novel mathematical framework for computer vision uses fractals as desarrollo main object for analysis. Fractals compromiso, fascinating y complex geometric patterns los exhibit self-similarity at different scales. These patterns compromiso, generar herramientas por medio de iterative processes, where a simple shape or equation posible repeated través y través again, often using recursive formulas. Here is where the Fractal Dimension comes into play. It is el measure of the complexity of the irregularity of el shape, y it is precisely this way of quantifying irregularity that elllows us to elpply the concept to computer vision. 

mandel zoom seahorse tail picture

Fractals el Computer Vision 

Fractals have applications, particularly in image analysis and pattern recognition. The basic idea behind using fractal dimension in computer vision is that it can capture the intricate details and self-similar structures that traditional methods might overlook. This is particularly useful when dealing with complex natural scenes or patterns that exhibit irregular and self-replicating structures. Here are some examples of its applications: 

  1. Texture analysis: Fractal dimension has been used to characterize textures in images, such as the surface of a natural stone or the bark of a tree. By calculating the fractal dimension of different regions in the image, it is possible to extract features that capture the texture’s complexity and use these features for classification or recognition tasks. 
  2. Medical imaging: it has been used to analyze medical images, such as X-rays or MRIs. By calculating the fractal dimension of different regions of an image, it is possible to detect irregularities or abnormalities in the image, such as the shape of a tumour or the density of a bone. 
picture of a fabric analysis with computer vision

Fabric Texture Analysis Using Computer Vision Techniques |
Semantic Scholar Fig 12

An example of fractal texture analysis for mammography of
breast… | Download Scientific Diagram (researchgate.net)

El box-counting method 

Fractal objects are self-similar, meaning that they exhibit the same patterns and structures at different scales, and the Fractal dimension is a way of quantifying this self-similarity. With this in mind, the first step of a general pipeline we can follow to apply this concept to a computer vision problem is computing the Fractal Dimension itself of the objects or regions of interest within an image. There are several methods to compute it, including correlation dimension and Hausdorff dimension. On this occasion, let us explore and understand the box-counting method, which is programmed in libraries such as  scikit-image and in pyfrac. 

Intuitively, this method consists of covering the fractal object with boxes of different sizes and counting the number of boxes required to cover the object at each level of size reduction. The process of successively decreasing the size of the boxes used to cover the object is a key aspect of this method. This reduction in box size allows us to explore the fractal at different scales or resolutions. As we progress to smaller boxes, we delve deeper into the fractal’s self-replicating patterns, enabling us to observe more intricate details. Each level of size reduction provides a finer view of the fractal, enhancing our understanding of its complexity and self-similarity. 

example of applying the box-counting method to the Koch curve

Applying the box-counting method to the Koch curve. The number of boxes… | Download Scientific Diagram (researchgate.net)

Why does es make sense a compute self-similarity/irregularity like this? Esta method allows us a look at how much desarrollo number transición boxes and desarrollo box size follow el power-law relationship, los posible, how much one quantity changes a a relative change transición desarrollo other. El slope transición this power-law curve posible used a estimate desarrollo fractal dimension. In desarrollo case transición a regular fractal, desarrollo number transición boxes needed a cover desarrollo fractal does not decrease linearly y desarrollo size transición desarrollo boxes, following el stable power-law relationship. On desarrollo other hand, Irregular fractals often tienen el fractional fractal dimension. 

Mathematical y Algorithmic Process 

Mathematically speaking, this is the procedure: 

1.Covering the Object with Boxes: The first step is to cover the fractal object (e.g., points or an image) with boxes of a fixed size ε. The size of ε determines the level of detail or resolution at which we are observing the fractal. 

2.Counting Boxes: Next, we count the number of boxes N(ε) required to cover the fractal object at that specific scale ε. In some cases, partially covered boxes may be counted as well.

3.Decreasing Box Size: The process is then repeated for smaller box sizes (ε/2, ε/4, ε/8 and so on), and the number of boxes needed to cover the fractal object at each level is recorded. 

Then we can express the power-law relationship as: 

N(ε)1/ε^D

It states that the number of boxes required to cover the fractal decreases at a rate proportional to the inverse of the box size raised to the power of the fractal dimension. This means that as we decrease the box size, the number of smaller boxes needed increases exponentially. 

The fractal dimension D is estimated from the slope of the log-log plot of the number of boxes N versus the box size εTaking the logarithm of both sides of the power-law relationship equation gives: 

log(N(ε))≈−D∗log(ε)

Since desarrollo relation posible inverse, objects y higher fractal dimensions are more irregular and complex, while objects y lower fractal dimensions compromiso, smoother y less complex, los posible, desarrollo object posible self-similar and has a constant fractal dimension across scales. Thus, desarrollo log-log plot will appear as a straight line. 

example of design and implementation of an estimator of fractal dimension using fuzzy techniques

Algorithmically, the process above is followed, receiving an object (points, or an image), and the initial box size ε. It is important to set the counter variable N to zero for each box size reduction iteration to keep track of the number of boxes covering the fractal object. The following is a general pipeline we could take as a guide to apply this method to a computer vision problem: 

1.Fractal Dimension Calculation: scikit-image y mahotas libraries provide functions to compute it with the box-counting method. 

2.Feature Extraction: Once the fractal dimension is calculated for different regions or objects in the image, it can be used as a feature descriptor. These features capture the intricacies and self-similar structures present in the visual data, which might be challenging to represent using traditional methods. 

3.Classification and Recognition: The extracted fractal dimension features can then be fed into machine learning algorithms for classification and recognition tasks. For example, in texture analysis, the fractal dimension features can differentiate between various types of textures, enabling accurate classification of different surfaces, such as stones or tree barks. Other applications include:  

a) Medical Image Analysis: In medical imaging, the computed fractal dimensions can be utilized to detect irregularities or abnormalities. For instance, in X-rays or MRIs, variations in fractal dimension within specific regions might indicate the presence of tumours or abnormalities in the examined tissues. 

b) Segmentation and Region of Interest (ROI) Identification: The Fractal dimensions can also be used for segmentation tasks, where it helps in identifying regions of interest within an image. By setting a threshold on the fractal dimension values, certain areas exhibiting desired complexities or irregularities can be highlighted, aiding in further analysis and decision-making. 

c) Noise Reduction and Image Enhancement: Fractal dimension can contribute to image denoising and enhancement. By comparing the fractal dimension of different regions, noise can be distinguished from important image features, allowing for targeted denoising and preservation of critical details.

Final remarks 

In summary, exploring y comprehending desarrollo latest mathematical frameworks el computer vision posible crucial a advancing techniques y algorithms, enabling more efficient and creative mundo a desarrollo core challenges. Rather than solely relying on brute force or deep learning algorithms, embracing concepts like skeletonization and fractal dimension showcases how mathematics can enrich desarrollo computer vision discipline. Integrating these mathematical principles with appropriate machine and deep learning algorithms empowers us a tackle complex problems effectively. 

References 

  1. Morphology – Distance Transform. University of Edinburgh https://homepages.inf.ed.ac.uk/rbf/HIPR2/distance.htm#:~:text=The distance transform is an,closest boundary from each point. 
  2. Skeleton pruning by contour approximation and the integer medial axis transform – Andres Solis Montero, Jochen Lang. Computers & Graphics Volume 36, Issue 5, August 2012, Pages 477-487: 
  3. Computing Dirichlet Tessellations in the Plane – P. J. Green, R. Sibson. The Computer Journal, Volume 21, Issue 2, May 1978, Pages 168–173: 
  4. The Fascinating World of Voronoi Diagrams – Francesco Bellelli. https://builtin.com/data-science/voronoi-diagram P. J. Green, R. Sibson 
  5. Design and implementation of an estimator of fractal dimension using fuzzy techniques – Xianyi Zeng, Ludovic Koehl, Christian Vasseur. January 2001 

 

picture of miguel granados data scientist and author of the article

Miguel Granados – Data Scientist

EQUINOX

¿Qué es IA?

Descubre cómo la IA puede revolucionar tu negocio

chess game seen through computer vision
illustration of a robot painting a woman in a canvas

Author: Maria Alejandra Ruiz – Data Engineer

AI and creativity: Friends or foes?

Recent advances in the field of Inteligencia Artificial have sparked a great deal of interest in “creative AI,” as it is called. While it is well known that IA technology is revolutionising various fields of work, at this time, it has been growing in its influence on creative activities and artistic creation. This article aims to show how IA can enhance creativity and whether partnering with algorithms can help harness the full potential of human creativity through a case study on the application of machine learning techniques in art.

newspaper with a title talking about the human machine interaction in the past

“More help than hurt” news in 1962 about human and computers interaction taken from https://twitter.com/PessimistsArc/status/1637793251720675329/photo/1

The case study

The case examines how incorporating machine learning into an artist’s toolkit affects their creative processes and highlights inventive interactions between artists and their machine-learning tools. It was found that to utilise the generative potential of AI and produce art; artists had to learn new techniques and modify their creative processes. In addition, these new activities and skills involved a change in conventional norms and creative procedures in both agents.

Machine learning models are made to recognise links and patterns in data and use knowledge to produce new and distinctive content. These models can be used to create new visual artworks, as well as new musical compositions, fashion collections, and other types of art.

Many artists’ creative processes are significantly impacted by the use of automatic learning models, which can disrupt or continue previous creative processes. These changes are more apparent in restructuring the creative flow around the generative process, the conceptual shifts around the inherent qualities of the outcomes of automatic learning, and the development of artists’ experience.

By analysing how artists, designers, and musicians use machine learning, we can better understand the various implications of Inteligencia Artificial. These implications range from automation to complementarity and relate to a fundamental aspect of human life: creativity. By exploring these professionals’ engagement with IA, it is hoped to gain a broader view of how this technology impacts the creative realm and how it can be used beneficially in the future.

The synergy between art, design and AI 

“AI art” refers to images and artistic works produced with Inteligencia Artificial. AI analyses these compositions and reinterprets them to create new works based on established rules and cues provided by users from vast amounts of artistic data and information that have been created throughout human history. The production of art through AI has become a powerful and persuasive tool for anyone interested in bringing their wildest ideas to life thanks to its processing capabilities, ability to create variations and the complexity of the details of the images.​ (1)​

This is an exciting space because there is a wide field of people within it. We can find scientists and engineers who work with AI, there are engineers with artistic training who work as scientists, and finally, we have artists who also have some technical training, but their primary means of expression is art.

AI creativity depends on the human being? 

As humans must design algorithms and programs in order to create and train AI models, the creativity and artistry of Inteligencia Artificial are greatly dependent on human intervention. Also, in order for the IA to produce artistic works, precise data and instructions must be provided. In conclusion, IA cannot produce art on its own; rather, it depends on human contribution to the development of tools and the provision of information for the production of new artistic works.

According to April Youngok Kim, artist and associate professor at Myongji University, in a session on “The Future of Art and Design with AI” at Nvidia’s GTC 2023 event, when she first used generative AI like Meet Journey and Dali, she was blown away. It was no longer just a tool but the best collaboration she had ever had.

-Read our article: AI creative implementations: Nvidia GTC 2023

The most amazing (for her) was that the final lines of the images the AI created were very similar to the images in her original existing paintings.

It was then that she realised that the images she was thinking of were her creations or a combination of everything that inspires her, including her favourite artists and art forms.
She felt more like a producer than a creator. She is also very grateful that generative AI has pushed the boundaries of what we can create, especially when one feels stuck and opens up new possibilities.​ (2)​

April’s work : http://cocolove1105.dothome.co.kr/index.php/nft_gif-animated-works-_ongoing-project/

“Non-artists can also create art with their imagination. It changed the concept and boundaries of contemporary art” 
April Youngok kim

IA Generativa has created a new visual language, but traditional artwork and artists will always be appreciated. Handmade objects will become even more prominent as the combination of IA Generativa and drawn animation shows.

Conclusion

So, are AI and creativity: Friends or foes? Ultimately, we conclude that Artificial Intelligence (AI) has the potential to revolutionise the way we conceive and consume cultural products radically. This technology allows us to personalise our experiences, which could lead to a world where the line between real images and those generated by IA becomes blurred.
However, we must be aware of the potential benefits and challenges that this technology brings, as well as its impact globally. IA enables people to tackle previously unattainable challenges, such as creating personalised stories and picture books. At the same time, it also fosters an artistic culture that is more diverse and respectful of minority tastes.
It is critical to consider how IA can change the way we consume and produce art and culture. We must be prepared to embrace the opportunities it offers while ensuring that we adequately address the ethical and social challenges that may arise.
IA ultimately has the power to transform our cultural world in significant ways, and it is everyone’s responsibility to understand and guide this change responsibly and ethically.

References 

  1. Zureikat, S. (2023, January 30). AI art vs. human art: What AI reveals about creativity. FromLight2Art. https://fromlight2art.com/ai-art-vs-human-art/?cookie-state-change=1680119854535 
  2. Attendee portal (n/d). Nvidia.com. Retrieved March 29, 2023, from https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1669929697102001pAKQ. 
  3. Vetrov, Y. (2017, January 3). Algorithm-driven design: How artificial intelligence is changing design. Smashing Magazine. https://www.smashingmagazine.com/2017/01/algorithm-driven-design-how-artificial-intelligence-changing-design/ 
picture of alejandra ruiz our data engineer

M. Alejandra Ruiz – Data Engineer

EQUINOX

¿Qué es IA?

Descubre cómo la IA puede revolucionar tu negocio

chess game seen through computer vision
ai generated image of thailand as an spatial landscape

Author: Carla Acosta – Lead Designer

Techsauce summit 2023: Nuestra experiencia en el sudeste asiático

Del 15 al 18 de Agosto, del 2023 se celebró en Bangkok la primera semana de la Inteligencia Artificial con el apoyo de la embajada británica en Tailandia. Equinox AI Lab Lab representó, con otras ocho compañías líderes en Inteligencia Artificial al Reino Unido y fue expositor en la feria de innovación y tecnología llamada TechSauce Summit. ¡Fue nuestra primera vez en el sudeste asiático!

“Fue una oportunidad única para crear relaciones valiosas y conocer el mercado de tecnología en el sudeste asiático que definitivamente está en ascenso. Tailandia está preparada para invertir y convertirse un referente en tecnologías de la industria 5.0”.

Alejandro Salamanca – Head of AI and Data Science

El evento se llevó a cabo el 16 y 17 de agosto en el Queen Sirikit National Convention Center (QSNCC) en el famoso y concurrido barrio Sukhumvit de Bangkok. El lugar fue una de las tantas increíbles cosas que presenciamos. Es un espacio que fue remodelado del 2019 al 2022, y que robó el aliento de los asistentes. Su nombre hace honor a la madre del actual rey: Rama X. Sus espacios se caracterizan por ser amplios, luminosos y con destellos dorados y blancos. Además, cuenta con auténticas artesanías tailandesas como ornamento en sus paredes. Desde el primer día nos sentimos en un mundo completamente diferente, viniendo de Londres.

picture of queen sirikit national convention center's crafts on the walls

Foto tomada por el equipo de Equinox AI Lab

La organización es otra virtud que vale la pena mencionar. El ingreso fue ágil y nunca se sintió sobre agendado. Dándole paso a lo que más nos concierne, la tecnología, pudimos compartir con startups de Tailandia, otras compañías representantes de países como Polonia, Japón, Taiwán y Francia, y compañías con mayor experiencia que han labrado su camino en esta industria hace décadas como CMC de Vietnam.

Al conocer las startups nos dimos cuenta que muchos jóvenes empresarios están estudiando y poniendo su esfuerzo en construir ideas competitivas que resalten en el mercado asiático. Uno de estos ejemplos es Aigen, quienes buscan hacer la IA asequible y accesible para todos en Tailandia para incrementar las capacidades competitivas del país. Así mismo, vimos temas recurrentes entre estas estrellas nacientes tales como sostenibilidad, innovación en materiales comestibles, AI en industrias como el marketing, la salud y el retail.

Las experiencias digitales (y no digitales) se llevaron la atención de los participantes, incluyéndonos. Dentro de la app del evento, se construyó un Treasure Hunt en donde se recogían puntos a través del espacio del evento, estos puntos se podían escanear con un QR o se podían ver con ayuda de AR, además a cada participante entregaban un avatar NFT (de hecho, fue nuestro primer NFT).

techsauce app screenshot showing the nft and ar experiences

Screenshot de la app del Techsauce Summit tomada por equipo Equinox AI Lab

Así mismo, experiencias como la VR se robaron la atención de los asistentes, juegos de zombies, y experiencias de equilibrio. Por último, robots cuadrúpedos y drones circulaban constantemente por el lugar convirtiéndolo en un espacio que parecía fuera del planeta.

Las experiencias no digitales también nos dieron una gran sorpresa, como es de común conocimiento los masajes tailandeses son reconocidos alrededor del mundo, y ¿Qué mejor que después de una charla intensa de negocios asistir a un masaje en el cuello, hombros y cabeza dentro del TechSauce Summit?

Además, contaban con experiencias como el análisis de la firma, la rueda de la fortuna y el número de la suerte por parte de una consultora de Feng Shui especializada, definitivamente algo nuevo para nosotros.

picture of the feng shui consultant at the techsauce summit 2023
picture of a dog alike robot at the techsauce summit at bangkok

Foto tomada por el equipo de Equinox AI Lab

En general consideramos esta experiencia completamente enriquecedora, podemos dar fé que asistir a un evento así con un stand es una oportunidad enorme para hacer gran cantidad de contactos que pueden terminar en conversiones. La feria hace un excelente balance entre empresas grandes, medianas y pequeñas generando un ambiente muy propicio para que todas tengan oportunidad sin importar su tamaño o expertise.

techSauce summit 2023: our experience in southeast asia

Foto tomada por la embajada de UK en Tailandia

Pudimos darnos cuenta que existen muchas empresas que están en el nivel de madurez apto para implementar AI en sus procesos de negocio y su estrategia, lo que lo hizo un mercado completamente atractivo para nuestras soluciones de IA y Ciencia de datos .

Para concluir, agradecemos a todos los que hicieron este evento un espacio más ameno para Equinox AI Lab, gracias a la emabajada de UK en Tailandia, a nuestros compañeros de stand, a las personas que se acercaban con tanto entusiasmo a escucharnos y a todos los que nos compartieron también sus soluciones. Sigamos construyendo soluciones de fuera de este mundo que este es solo el principio.

Pd: Las personas en Tailandia son las más amables y la comida es fantástica. Realmente recomendamos visitar este país. <3

ai and photoshop composed image of thailand as an space landscape

Pieza compuesta por imágenes generadas por IA y la varita mágica de nuestra diseñadora

carla acosta

Carla Acosta – Lead Designer

EQUINOX

¿Qué es IA?

Descubre cómo la IA puede revolucionar tu negocio

chess game seen through computer vision
picture of three robots working at an office

Autor: Arturo Gutierrez – Ingeniero RPA

INTRODUCCIÓN

Seguramente muchas personas se preguntan cómo gigantes de la industria como Netflix, Unilever y ANZ Bank han podido mejorar el crecimiento profesional de sus colaboradores, aumentar sus ganancias y optimizar sus procesos internos. Muchos apuntan a que su desarrollo se ha debido gracias a su musculo financiero o ideas de alguien altamente aplicado que tiene conocimientos de otros planetas, nada más alejado de la realidad.  

La verdad se puede encontrar en un punto un tanto más simple y demoledoramente eficaz, como lo es buen manejo de las actividades diarias y la mejora en las habilidades de los colaboradores. Esto se conoce mundialmente como “profit per employee”, una nueva medida que deja atrás temas obsoletos como el ROI y empieza a calificar una empresa por el valor que un empleado puede brindar a través del tiempo. 

Ahora, la pregunta es ¿cómo se pueden mejorar estos índices para que la empresa se parezca más a los magnates actuales que están generando millones de dólares al mes?  

¿En qué se puede invertir para obtener el ansiado “profit per employee” del que todos hablan?, o mejor aún, los colaboradores se quejan de las tareas repetitivas que tienen asignadas, ¿cómo hacer para que no se aburran de su trabajo y terminen yéndose de la empresa?  

La respuesta a estas preguntas se encuentra en el término Intelligent Process Automation o IPA: La revolución de la transformación digital, se conoce también como IA (intelligent Automation) o Cognitive Automation, se basa en la integración de tecnologías tales como la Inteligencia Artificial y RPA para la automatización de procesos organizacionales. 

ROMPIENDO LOS MITOS DE IPA

MITO 1: IPA posible a acabar a los empleos   

Las empresas de hoy en día necesitan menos empleados, algo que se debe dejar de ver como negativo, varios estudios indican que más personas mueren de estrés o explotación laboral que en guerras y enfermedades terminales. Más del 75 % de las personas no se encuentran satisfechas con sus trabajos, debido a que son repetitivos y muy tediosos. Es importante ver una alternativa a estos trabajos que están destruyendo la carrera profesional de los colaboradores y ver nuevas estrategias de negocio que impulsen el “profit per employee”, en la adquisición de nuevas habilidades y tecnologías.  

69% de los trabajadores esperan que a través de la automatización puedan ser más productivas en sus actividades profesionales principales, y 86% de los empleados piensan que el uso de la automatización en el espacio de trabajo los impulsa a conocer temas de valor para la organización, el hecho que se necesiten menos empleados se debe ver como una oportunidad de crecimiento profesional en los colaboradores. 

working robots in an office

Imagen generada con Stable Diffusion de robots trabajando

Lo que IPA puede ofrecer a largo plazo se conoce como “Triple A artifact”, que son todos los beneficios que se pueden dar a través de la implementación de tecnologías en los procesos, se divide en tres factores importantes:  

  • Automatización: se deben reconocer y automatizar las tareas repetitivas en los procesos.  
  • Aumentar: se debe identificar el comportamiento de los procesos a través del tiempo y su beneficio para la empresa por medio de herramientas de análisis de datos.   
  • Abandonar: eliminar cada una de esas actividades que no aporten valor a las empresas y de las que se refleje un gasto innecesario de tiempo y esfuerzo.  

En la siguiente imagen se puede observar cómo IPA puede mejorar el desempeño de aquellas actividades repetitivas que se presentan en las empresas en el día a día de los colaboradores y aumentar el “Profit per employee”. 

profit per employee improvement with automation table

Aumento del profit per employee con automatización

Como se puede evidenciar, gran cantidad de las actividades repetitivas y de poco valor se pueden automatizar por medio de IPA y se pueden generar herramientas a ayuda a los trabajadores a mejorar su desempeño y crecimiento profesional. 

MITO 2: No existe el capital ni el conocimiento suficiente para implementar esta tecnología

Para llevar a cabo el buen que transición IPA: La revolución de la transformación digital el las empresas, posible necesario a las desarrollo de transición y transformación digital los se deben adoptar para a tienen valor exponencial en el desarrollo gigantes través del tiempo. Si se siguen con compromiso, paciencia y disciplina, estas tres fases es posible llegar a ese desarrollo tecnológico que los gigantes empresariales tienen hasta el momento. 

digital transformation phases graphic

Fases de valor estratégico de RPA

Fase 1: Eficiencia

Se encarga de automatizar e identificar por medio de RPA todos aquellos procesos repetitivos y rutinarios que se encuentren actualmente en la empresa.  

El potencial de esta tecnología no está siendo aprovechado debido a que, hablando de inversión, RPA genera un ROI Entre 30-200% en los primeros 18 meses, y en términos de progreso en 2021 el mercado de RPA era de 3.5 billones de USD, se espera que crezca un 40% al año.  

Pero la integración de RPA en este punto no es suficiente, se presentan muchos desafíos de escalabilidad, inversiones estratégicas y beneficios esperados que deben ser manejados por una segunda fase. 

 

Fase 2: Efectividad  

Se presentan estrategias para escalar esta tecnología a través del tiempo. Los clientes poseen entre 1 y 50 robots, pocos han escalado de 51 – 100, se espera que los métodos mejoren la transición de fase 1 a fase 2. Sin embargo, todavía siguen existiendo procesos que no se pueden llevar a cabo por RPA debido a su complejidad y tipos de datos, para ellos es importante escalar RPA a un nivel empresarial y crear automatizaciones inteligentes por medio de una tercera fase. 
 

Fase 3: Habilitación  

Es la última fase y en donde IPA genera sus mayores beneficios esperados. Para que esta fase de sus frutos se debe tener en cuenta la automatización de procesos de midoffice, backoffice y actividades frente al cliente, manejar datos no estructurados, analítica y decisiones probabilísticas y tener en cuenta que gran mayoría de los desafíos son organizacionales y gerenciales.  

Se deben convertir las empresas en negocios digitales, en donde, el gran valor se encuentra en crear una plataforma de opciones digitales que brinde a los negocios flexibilidad, adaptabilidad, opciones estratégicas y resiliencia a bajo costo.  

 

Como se ve reflejado en la explicación de cada una de las fases, es necesario ir de menos a más en estas integraciones. Es recomendable empezar identificando mediante un diagnóstico los procesos repetitivos y rutinarios que pueden ser automatizados, ver cómo se pueden escalar a nivel empresarial más automatizaciones (tener más robots) y por último, llevar a cabo una fase de transformación digital en donde la aplicación de tecnologías tales como inteligencia artificial y RPA vallan de la mano en procesos complejos que permitan obtener estadísticas y generar herramientas para complementar el trabajo de los colaboradores.

MITO 3: Eso de la IPA y Trasformación digital no aplica para el área y tipo de negocio actuales

Existen diferentes métodos de aplicación de IPA en los procesos, los más relevantes y que están en una fase de estudio y aplicación en Equinox AI Lab son los siguientes:

-Document Understanding: 

Es conocido como procesamiento inteligente de documentos. Su objetivo principal es el de procesar documentos de diferentes formatos y obtener información relevante a través de la integración de dos tecnologías, como lo son la inteligencia artificial y RPA.  

Esta tecnología es aplicable a diferentes sectores de la industria procesando documentos como facturas, recibos, órdenes de compra, facturas de servicios públicos, facturas de desembarco, pasaportes, licencias, entre otros documentos de los que RPA por sí solo no puede hacer el proceso de extracción debido a la complejidad en su estructura y contexto. 

Algunos ejemplos aplicables a áreas específicas de negocio pueden ser los siguientes: 

  • Servicios financieros y seguros: Cuentas por pagar y por cobrar, Formularios del IRS, solicitud de préstamos, tramitación de hipotecas, apertura de cuentas e incorporación de clientes, tramitación de reclamaciones, incorporación de proveedores y procesos relacionados con el cumplimiento de la normativa.   
  • Recursos humanos: incorporación de empleados, selección de currículos y tramitación de expedientes de RRHH.  
  • Manufactura: tramitación de pedidos de venta, solicitud de piezas al cliente y procesamiento de envíos.   
  • Sector público: solicitud de migración, solicitudes escolares y solicitud de gestión de pasaportes.  
  • Salud: formularios médicos, facturas médicas, historiales médicos y recetas de medicamentos. 

Acá dejamos algunos tips para llevar a cabo un buen procesamiento inteligente de documentos:  

  1. Tener un flujo adecuado para los diferentes procesos, se sugiere utilizar el siguiente
rpa workflow graphic

Flujo de trabajo de RPA en procesos organizacionales

  • Taxonomía: es el entendimiento del documento, en esta fase es importante definir los tipos de documentos y los campos que se van a obtener por medio de la extracción.   
  • Digitalizar: Convertir los documentos por medio de OCR en datos legibles para la máquina.  
  • Clasificar: Clasificar y separar los archivos en algún tipo de documento.   
  • Extraer: extraer la información de los documentos.  
  • Exportar: exportar los datos para utilizarlos después en otros procesos.   
  1. Adquirir una variabilidad balanceada, obtener el numero adecuado de documentos para el entrenamiento del modelo, en este caso es importante multiplicar el número de campos que se requiere extraer por 25.
  2. Generar un algoritmo de clusterización, escoger 10 ejemplares de cada formato y no más de 10 en caso de que sean muchos formatos.   

NLP + RPA 

Natural Language Processing (NLP) es una tecnología que permite el análisis de grandes cantidades de datos en forma de texto o audio, permitiendo a la computadora interpretar y comprender el lenguaje humano. Todo esto basado en Machine Learning. 

Para la correcta implementación de los modelos de NLP, y en especial en el caso de IPA, es importante establecer el objetivo, la cantidad y calidad de datos que se tienen. Esto porque de acuerdo al modelo y el objetivo se van a generar los archivos de entrenamiento y evaluación del mismo. 

Usualmente, la data de entrada se puede ingresar con archivos csv o JSON, y la salida estará en formato JSON. Estos modelos utilizan diferentes técnicas de identificación de patrones, y pueden ser utilizados en:   

  • Clasificación de datos o textos individuales: por ejemplo, para identificar si un texto tiene un sentido positivo o negativo.  
  • Extraer entidades por categoría: Como en el caso de informes científicos de los cuales se requieran extraer los químicos que se vayan mencionando y clasificarlos por categorías.  

CONCLUSIONES 

Trabajar con IPA: La revolución de la transformación digital permite desmitificar ciertas creencias que no dejan a las empresas llegar a la transformación digital que desean tener.  

Se puede observar que aumentando el “Profit per employee” por medio de un triple A artifact beneficia, no solo la carrera profesional de los trabajadores, sino el progreso de la empresa, abandonando aquellas actividades que representan un gasto de tiempo y enfocando el desarrollo de herramientas tecnológicas para la mejora de los procesos.  

No es necesario tener un gran capital y conocimiento de otro mundo, para aplicar esta tecnología, basta solo con ser pacientes y confiar en las tres fases de transformación digital “eficiencia”, “efectividad” y “habilitación” y por último, IPA es escalable y aplicable a diferentes áreas de negocio, y se espera que, por medio de este artículo, el lector logre evidenciar el impacto que IPA está generando en las empresas y como puede ser útil para beneficiar positivamente la suya y llegar a los objetivos que desean. 

REFERENCIAS

Intelligent Automation – Learn How to Harness Artificial Intelligence to Boost Business & Make Our World More Human (Libro) 

Becoming strategic with Intelligent Automation – leslie willcoks 

UiPath document Understanding – Documentacion Uipath 

Document Understanding: Cómo prepararse para una implementación exitosa – See Document Understanding: Cómo prepararse para una implementación exitosa at UiPath Colombia 

NLP – ¿Qué es el procesamiento de lenguaje natural? – Explicación del procesamiento de lenguaje natural – AWS (amazon.com) 

TextClassification – Documentación de UiPath 

picture of the author arturo gutierrez

Arturo Gutierrez – Ingeniero RPA

EQUINOX

¿Qué es IA?

Descubre cómo la IA puede revolucionar tu negocio

chess game seen through computer vision
illustration of neon heart and heart beat

Author: Oscar Sanchez – Data Architect

ABSTRACT

AI models for predicting cardiac diseases [The Colombian example] 

Around the world, heart diseases are the most common cause of death, generally because people don’t pay attention to them. At the same time, there are not enough heart specialists for many people who have or will have heart problems in the future.   

For this reason, this article proposes using Inteligencia Artificial to predict heart diseases before patients have delicate issues like heart attacks. 

Also, to establish how many specialists are needed in different areas to be effective and lose fewer lives because of heart diseases. 

man having a heart attack at home

Take from Freepik

Cardiac diseases around the world

Around the world, cardiovascular diseases are the first cause of death. The percentage of global deaths caused by cardiovascular problems is expected to be 45% (WHO, 2021) . Besides, out of the 17 million premature deaths (under 70 y.o) due to noncommunicable diseases in 2019, 38% were caused by CVDs.  

As a result of the pandemic caused by COVID-19, a significant sample of patients who had complications have presented an increased risk of sudden death, acute myocardial infarction, and arrhythmias, among others (Triana).

Under these circumstances, the percentage of deaths from cardiovascular problems, far from decreasing, will increase significantly after 2020, and it is already a global public health problem. Also, the world is critically concerned about the lack of heart specialists. There are not enough heart specialists to cover the high demand.  

Despite being the major cause of mortality, preventive campaigns have not been effective, and many people have died without knowing they had a heart complication to treat.  

Cardiac diseases in Colombia and their treatment  

Not only around the world, but also in Colombia, cardiac diseases are the most popular cause of dead (minsalud, s.f.).

Figure 1: causes of dead in Colombia source: DANE 

According to the image, the main cause of death in Colombia is heart issues, with a total of 13.926 deaths only in the first quarter of 2022.  

Despite many prevention campaigns, the number of deaths keeps growing, and lacking specialists doesn’t facilitate the situation.  

Also, patients or their health provider entities cannot cover many treatment costs. Because of this, this issue is a main problem for Colombia.  

The Colombian government invested in 2017 around 6.4 billion pesos (1.5 million dollars) to treat cardiac diseases (cost, 2017) , but the number of deaths continued to grow, so we have to ask ourselves if investing more solves the problem. 

Prediction of cardiac disease with AI

With the use of Artificial Intelligence, we can support and diagnose cardiovascular diseases early, and we wanted to experiment to create a reliable solution.

First, we took into account significant variables such as:

  • BMI (body mass index) 
  • Bad habits (tobacco, alcohol) (information provided by the patient) 
  • High blood sugar levels (diagnostic tests) 
  • High blood cholesterol levels (diagnostic tests) 
  • Fruit consumption (information provided by the patient) 
  • Vegetable consumption (information provided by the patient) 
  • Having hypertension (diagnostic tests) 
  • Percentage of body fat (measurable values) 
  • Percentage of visceral fat (measurable values)  

As you can see, these types of variables are categorised into two types:

  • Diagnostic tests or measurable values 
  • Subjective information provided by the patient.

The solution to the problem arises from the extraction of the information of the patients from their clinical history, searching for the variables described above to build a training dataset with the highest possible reliability.  

For this exercise, we used a dataset provided by Kaggle (kaggle, 2023) , which greatly approximates global behaviour.   

After this, we proceed with the training of the adjusted model and, in the same way, the exposure of an API to evaluate new patients.  

The response to this evaluation will categorise the patient as a patient without risk or with a potential heart problem. So, the number of cardiologists needed can also be predicted according to the number of patients at risk of developing heart disease.  

Applicable AI models

The applicable AI models according to the behaviour of data are:  

  • Decision tree: a type of supervised learning algorithm used in machine learning and data mining that uses a flowchart-like structure to visualise the decisions made by the algorithm based on the input features of the data (Liberman, 2017) .
  • Random forest: is a supervised learning algorithm used in machine learning that combines multiple decision trees to improve the accuracy and robustness of the model.

The dataset we chose has 253.680 rows for data training and was tested (80/20) with the variables mentioned before. The best accuracy it reached was with random forest, with 70%. 

It means that of 100 people, the model could hit 70. It is a good number for saving lives without the cost of corrective treatments in a country like Colombia.  

Application and utilities of an accurate prediction

Accurately predicting cardiac disease may help apply preventive treatments to save lives cheaply. In the same way, it might reduce patient risk because preventive treatments are cheaper than corrective treatments and more effective (cost, 2017) .  

In a country like Colombia, it may make a difference and increase the coverage around vulnerable populations.  

Also, with the classification of people, you may determine the need for a heart specialist in a specific area in Colombia to distribute such specialists better, as they are very short-staffed.  

CONCLUSION

AI may be a great supporting tool not only for patients who should improve their health habits and have a good preventive treatment to save their lives but also for getting good use of the heart specialist, knowing that it is a scarce resource in Colombia and worldwide.  

Around the world, many initiatives exist for using AI in different health issues, mainly for diagnostics. An early diagnosis of any disease makes the difference between life and death.   

According to data protection, health entities should participate in open data initiatives in Colombia to provide good input for research on health topics and other issues for the country’s growth.

REFERENCIAS

bayer. (2020). Obtenido de https://www.bayer.com/es/co/las-enfermedades-cardiovasculares-son-la-primera-causa-de-muerte-en-colombia-y-el-mundo#:~:text=septiembre%2001%2C%202020-,Las%20enfermedades%20cardiovasculares%20son%20la%20primera%20causa%20de%20muerte%20en,15.543%20a%20enfer 

cost. (2017). Obtenido de https://consultorsalud.com/colombia-invierte-64-billones-al-ano-en-tratar-enfermedades-cardiacas/ 

kaggle. (2023). Obtenido de www.kaggle.com 

Liberman, N. (1 de 2017). Obtenido de https://towardsdatascience.com/decision-trees-and-random-forests-df0c3123f991 

minsalud. (s.f.). Obtenido de https://www.minsalud.gov.co/salud/publica/PENT/Paginas/enfermedades-cardiovasculares.aspx 

WHO. (2021). Obtenido de https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) 

oscar Sanchez data architect

Oscar Sanchez – Data Architect

EQUINOX

¿Qué es IA?

Descubre cómo la IA puede revolucionar tu negocio

chess game seen through computer vision
confirmation bias diagram example

Author: Ivan Caballero – AI Designer

INTRODUCTION

If you were asked which animal is the world’s deadliest to humans, what animal would you say? Or if A bat and a ball cost $1.10, but the bat costs one dollar more than the ball. Do you know how much the ball costs? Or one that my father asked me once when I was a 10-year-old: what weighs more, a kilo of feathers or a kilo of potatoes?

picture of a kid thinking

Perhaps you have heard or faced this type of tricky riddle that is usually used to make you fail in the answer and realise something: we struggle to be critical. Don’t worry; it is natural and inevitable in human beings. In trying to save energy and reduce cognitive load, our mind uses previous experiences to interpret information, make quick decisions, and have judgments about something. However, this process makes mistakes because many variables are overlooked, leaving us short of data and making incorrect judgments. This effect is known as cognitive bias.

In Ciencia de datos projects, it is crucial to consider the possible cognitive biases that teams face daily to know how we can avoid them because when understanding and processing a data set, building and designing artificial intelligence models or presenting information in graphs, these biases can affect the performance of what is built or present a completely distorted reality. That is why with this blog, we want to offer some online resources that can help you learn about the different varieties of biases and how to avoid them.

Wikipedia’s Cognitive Bias Codex

confirmation bias diagram

Confirmation bias diagram by Equinox AI Lab

https://commons.wikimedia.org/wiki/File:Cognitive_bias_codex_en.svg

This is a compilation of 188 cognitive biases categorised by Buster Benson, a marketing manager at Slack, and illustrated by user John Manoogian III (jm3) and linked to the articles written by user TilmannR on Wikipedia. Although for many, Wikipedia may not be a platform to trust; this graphic representation can help us have a quick reference guide to learn and keep in mind each of the biases and their leading causes.

Decision Lab list

choose the correct path illustration

Framing Effect by Equinox AI Lab

https://thedecisionlab.com/

This behavioural science firm has a list of biases categorised into ambiguity, information overload, memory, and speed. Each bias entry describes the bias, when and why it occurs, its effects when making decisions, how to prevent them, and daily life examples. This resource accurately explains biases, and its examples are easy to understand.

On the other hand, it is important for Data Science projects to present and analyse data effectively and realistically. Data visualisation should not be taken lightly. So here we also give you two key resources when it comes to avoiding biases in data visualisation.

From Data to Viz

Disposition Effect by Equinox AI Lab

https://www.data-to-viz.com/caveats.html

This website is intended to be a guide for designing accurate graphs according to what you need to represent in visualisation. Each bias entry is titled with the intention we have when plotting, the good and bad examples when using it and the considerations we must keep in mind to decide if the graph fits our intention.

Geckoboard

universe diagram to explain availability bias

Availability bias by Equinox AI Lab

https://www.geckoboard.com/best-practice/statistical-fallacies/#.WsXXTmrFLIU

This company has a section where it lists 15 Data fallacies that may occur when interpreting and analysing data. There you will find what they are about, how to avoid them, and resources related to each fallacy.

Finally, you now have some resources you can take advantage of to avoid biases in Data Science projects. And if you were wondering what the answers to each of the riddles are, here are their solution: the deadliest animal for humans is the mosquito, the ball costs 5 cents, and to my 10-year-old self, both the feathers and the potatoes weigh a kilo :’).

ivan caballero

Ivan Caballero – AI Designer

EQUINOX

¿Qué es IA?

Descubre cómo la IA puede revolucionar tu negocio

chess game seen through computer vision
Spanish
Tau

Did you know that AI can boost productivity by 40%?